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In this paper we explore the braiding properties of the Moore-Read fractional Hall sequence, which amounts
to computing the adiabatic evolution of the Hall liquid when the anyons are moved along various trajectories.
In this work, the anyons are pinned to precise spatial configurations by using specific external potentials. Such
external potentials break the translational symmetry and it appears that one will be forced to simulate the
braidings on the entire many-body Hilbert space, an absolutely prohibitive scenario. We demonstrate how to
overcome this difficulty and obtain the exact braidings for fairly large Hall systems. For this, we show that the
incompressible state of a general �k ,m� fractional Hall sequence can be viewed as the unique zero mode of a
specific Hamiltonian H�k,m�, whose form is explicitly derived by using k-particle creation operators. The
compressible Hall states corresponding to n�k anyons fixed at w1 , . . . ,wnk are shown to be the zero modes of
a pinning Hamiltonian Hw1,. . .,wnk

�k,m� , which is also explicitly derived. The zero modes of Hw1,. . .,wnk

�k,m� are shown to
be contained in the space of the zero modes of H�k,m�. Therefore, the computation of the braidings can be done
entirely within this space, which we map out for a number of Hall systems. Using this efficient computational
method, we study various properties of the Moore-Read states. In particular, we present direct confirmation of
their topological and non-Abelian properties that were previously predicted using the underlying conformal
field theory structure of the Moore-Read state.
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I. INTRODUCTION

The recently discovered fractional Hall states at filling
factors �=5 /2,1 and �=12 /5,2 are thought to contain anyons
obeying non-Abelian statistics. It was argued3 that these
states are part of the Moore-Read sequence,4 and of the
Read-Rezayi5 sequence at k=3, respectively. Both states re-
ceived sustained attention from the theoretical and experi-
mental condensed-matter community because they can pro-
vide the key to the physical realization of a topological
quantum computer �TQC�. For this reason, there is a concen-
trated effort on both theoretical and experimental fronts for
finding direct confirmations of the non-Abelian and topologi-
cal properties of these fractional Hall states.6–14

In spite of an overwhelming indirect evidence, the non-
Abelian statistics for the Moore-Read sequence was not con-
sidered resolved15 until the relatively recent numerical con-
firmation of Ref. 16, where Monte Carlo techniques were
used to compute a small number of adiabatic mononodro-
mies. The present paper reports the results of an exact diago-
nalization study, which allows us to take a direct and unprec-
edented look into the non-Abelian and topological properties
of the Moore-Read sequence. We have results for systems
containing two and four anyons. A model Hamiltonian is
used to pin down the anyons at specified locations and to
move them adiabatically along different paths. Among our
results, the reader will find the following: �1� a map of the
Abelian and non-Abelian adiabatic curvature experienced by
an itinerant anyon when the rest of the anyons are kept at
fixed locations. �2� A map of a newly introduced twist den-
sity, which measures the twist of the zero modes space dur-
ing the adiabatic braidings. �3� A direct proof that the adia-
batic curvature is strongly localized near the fixed anyons,
thus confirming the topological properties of adiabatic

braids. �4� A direct proof that the monodromy corresponding
to a braiding in which one anyon loops around another anyon
is in perfect agreement with the conformal field theory �CFT�
prediction. �5� A direct proof that the zero modes space splits
according to the fusion rules of the underling conformal field
theory structure of the Moore-Read state. �6� A direct proof
that the conformal blocks can be distinguished by bringing
two anyons together and by measuring the electron density
for the fused anyons.

Let us briefly mention the relevance of our study for TQC.
The logic gates in TQC algorithms can be generated by se-
quences of braids. The specific sequences of braids can be
computed using the Solovay-Kitaev algorithm,17 once a uni-
tary representation of the anyons’ braid group is provided.
For the Fibonacci anyons, for example, the braiding se-
quences implementing the elementary logic gates were ex-
plicitly calculated in Refs. 18 and 19. The unitary represen-
tations of the braid group can be classified by various
methods. Particularly, the Ref. 20 describes a general method
for generating unitary representations of the braid group us-
ing quantum groups. These representations were connected
to the braidings of the anyons in fractional Hall liquids via
the argument that braiding can be computed from an effec-
tive picture in which the anyons carry an internal quantum
symmetry. This symmetry can be derived from the underly-
ing CFT structure of the fractional Hall sequence. For ex-

ample, the braiding of the Fibonacci anyons in the sl�2�k
̂

Wess-Zumino-Witten theory can be explicitly generated us-
ing the Uq�sl�2�� quantum group at the root of unity q
=e2�i/�k+2�.20 It was also argued20 that the braiding of the
Read-Rezayi parafermions can be explicitly generated using
the Uq1

�sl�2�� � CZ4k,q2
quantum group at the roots of unity

q1=e2�i/�k+2� and q2=e−i�/2k. For the Moore-Read sequence
�k=2�, the braiding reduces to the spinor representation of
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the mirror reflections in the group SO�2n�, as discovered
long time ago by Nayak and Wilczek.21

In all these algebraic derivations the anyons are assumed
infinitely far apart from each other. In practice this will not
be the case and this is the main reason why the algebraic
results need a direct confirmation showing that the braiding
properties remain unchanged when finite anyon densities are
considered. So far, our numerical results confirm that this is
the case.

II. FRACTIONAL HALL SEQUENCES: GENERAL
CONSIDERATIONS

The Hall sequences can be labeled by two integers: k
=1,2 , . . . and m=0,1 , . . .. The filling factor and the confor-
mal charge for each sequence are given by

� =
k

km + 2
, c = 1 +

2�k − 1�
k + 2

. �1�

The k=1, �=1 / �m+2� sequence corresponds to the Laughlin
state,22 which has fractionally charged anyons carrying inte-
ger flux. Their braiding is Abelian. The k�2 sequences have
fractionally charged anyons carrying fractional flux. Their
braiding is believed to be non Abelian. The case k=2 corre-
sponds to the Moore-Read sequence;4 k=3 and greater cor-
respond to the Read-Rezayi sequences.5 Excepting k=1, 2,
and 4, all sequences support universal quantum computation.

We define the k-particle creation operators, �M
�k,m�†, gener-

ating �from the vacuum� k particles in a Laughlin state �we
set the magnetic length to 1�

�r1, . . . ,rk��M
�k,m�†�0� = �z1 + ¯ + zk�M

� �
i�j�k

�zi − zj�me−1/4 	
i=1

k
�zi�

2
, �2�

where z=x+ iy is the complex representation of the position
r= �x ,y� in the two-dimensional plane and M and m are in-
tegers larger or equal to zero. The fractional Hall sequences
can be described as follows.

A. Incompressible states

We claim that the incompressible Hall state for an arbi-
trary �k ,m�, originally defined in terms of certain correlators
of the Zk parafermion conformal algebra, is the highest
electron-density state satisfying

�M
�2,m���	�k,m�� = 0, ∀ M � 0 and m� � m ,

�M
�k+1,m��	�k,m�� = 0, ∀ M � 0. �3�

These incompressible states occur at electron densities given
in Eq. �1�.

Let us elaborate on the above conditions. From the defi-
nition given in Eq. �2�, we have

��M
�2,m��	�k,m���z3, . . . ,zN� =
 d2z1
 d2z2�z1

� + z2
��M

��z1
� − z2

��m�e−1/4��z1�2+�z2�2�

�	�k,m��z1,z2, . . . ,zN� . �4�

The general structure of 	�k,m� is

	�k,m��z1, . . . ,zN� = 	̃k�z1, . . . ,zN�

� �
i�j�N

�zi − zj�me−1/4	i=1
N �zi�

2
, �5�

where 	̃k�z1 , . . . ,zN� is the correlation function of N number

of Zk parafermion fields �we include in 	̃k the factors that
make the correlation function nonsingular�. We shall see that
the first condition of Eq. �3� relates to the part of the wave
function contained in the second row of the above equation.
Indeed, the right-hand side of Eq. �4� reduces to

�
2�i�j

�zi − zj�me−1/4	i=3
N �zi�

2
 d2z1
 d2z2

��z1
� + z2

��M�z1 − z2�2m�e−1/2��z1�2+�z2�2�

��z1 − z2�m−m��
i=3

N

�zi − z1�m�zi − z2�m

�	̃k�z1, . . . ,zN� . �6�

The multiple integral projects out the part of the integrand
invariant to four-dimensional rotations in the �r1 ,r2� sub-
space and we argue that this part is zero. We focus to rota-
tions around the axis connecting r1+r2 to the origin. The
second row of the above equation is invariant to such rota-
tions but the invariant part of the remaining rows is identi-
cally zero. Indeed, the third and fourth rows are analytic
functions in all complex variables, hence their product admit
an expansion such as 	
c
�z1−z2�
, where c
 may depend
on z1+z2 ,z3 , . . . ,zN. The invariant part of such expansion is
equal to c0 but c0 is identically zero when m��m. This
proves the first condition of Eq. �3�.

We consider now the second condition, which says that

��M
�k+1,m�	�k,m���zk+2, . . . ,zN�

=
 d2z1. . .
 d2zk+1�z1
� + ¯ + zk+1

� �M

� �
i�j�k+1

�zi
� − zj

��me−1/4 	
i=1

k+1
�zi�

2
	�k,m��z1, . . . ,zN� �7�

is identically zero. The right-hand side of Eq. �7� is equal to
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�
k+2�i�j

�zi − zj�me−1/4 	
i�k+1

�zi�
2
 d2z1. . .
 d2zk+1

� �z1
� + ¯ + zk+1

� �M �
i�j�k+1

�zi − zj�2me−1/2 	
i=1

k+1
�zi�

2

� 	̃k�z1, . . . ,zN��
i=1

k+1

�
j�k+1

�zi − zj�m. �8�

The third row is an analytic function in all complex argu-
ments, hence it admits an expansion such as

	



c
 �
i�j�k+1

�zi − zj�
ij , �9�

where the coefficients may depend on z1+ ¯+zk+1,
zk+2 , . . . ,zN. The index 
 refers to the collection of indices 
ij
appearing inside the product. The only nonzero contribution
to the integral of Eq. �8� comes from the term 
=0, as one
can see by switching to the coordinates s= �z1+ ¯+zk+1� / �k
+1�, z̃i=zi−s. But there is no such term because

	̃k�z1 , . . . ,zN� cancels identically when k+1 particles come
to the same point in space.5

We reformulate Eq. �3� in terms of the creation operators
��k,m��w�† generating k-particle Laughlin clusters centered at
different w’s,

�r1, . . . ,rk���k,m��w�†�0� = �
i�j�k

�zi − zj�me−1/4 	
i=1

k
�zi − w�2.

�10�

The incompressible states are then uniquely defined as the
highest electron-density states satisfying

��2,m���w��	�k,m�� = 0, ∀ w and m� � m ,

��k+1,m��w��	�k,m�� = 0, ∀ w . �11�

B. Compressible states

The lower electron-density states satisfy the same condi-
tions but the uniqueness is, of course, lost. A lower density
state 	w1. . .wnk

�k,m� with n�k anyons located at �w�=w1 , . . . ,wnk

has the general form

	�w�
�k,m��z1, . . . ,zN� = 	̃�w��z1, . . . ,zN�

� �
i�j�N

�zi − zj�me−1/4 	
i=1

N
�zi�

2
, �12�

where 	̃�w��z1 , . . . ,zN� is a certain correlator �we include the
factors that make the correlator nonsingular�.5 This correlator
is a multivalued function in w’s. Each branch defines a dif-
ferent state. All these states have the anyons fixed at the same
locations �w�. The degeneracy of the states with fixed anyon
positions is discussed in details in Ref. 20, for arbitrary k.

The correlators 	̃�w��z1 , . . . ,zN� have the property of vanish-
ing whenever k particles meet at any of the w’s.5

We now show that these states can be defined by an ad-
ditional condition to Eq. �3�, namely,

��k,m��w���	�w�
�k,m�� = 0, ∀ � = 1, . . . ,nk . �13�

Indeed, we have

���k,m��w��	�w�
�k,m���zk+1, . . . ,zN�

=
 d2z1. . .
 d2zk �
i�j�k

�zi
� − zj

��me−1/4 	
i=1

k
�zi − w��2

� 	̃�w��z1, . . . ,zN� �
i�j�N

�zi − zj�me−1/4 	
i=1

N
�zi�

2
. �14�

The right-hand side can be written as

�
k�i�j

�zi − zj�me−1/4 	
i�k

�zi�
2
 d2z1. . .
 d2zk

� �
i�j�k

�zi − zj�2me−1/4 	
i=1

k
�zi − w��2+�zi�

2

� 	̃�w��z1, . . . ,zN��
i=1

k

�
j�k

�zi − zj�m. �15�

The integral can be shown to be identically zero by using the
clustering properties of the correlator.

Of course, we also need to prove that Eqs. �3� and �13� are
not satisfied by states other than the quasihole states of Eq.
�12�. For k=2 we have verified numerically �in the sphere
geometry� that the number of linearly independent states sat-
isfying these conditions is precisely equal to 2n−1, as it
should.23 A similar study was conducted for the k=3 Hall
sequence.24

III. THE PINNING HAMILTONIAN

Based on the description given in the previous section, we
can generate simple model Hamiltonians for each fractional
Hall sequence. Such a task was previously undertaken in
Ref. 25.

We claim that all incompressible fractional Hall states
corresponding to given k and m are zero energy states for the
following Hamiltonian

H�k,m� = 
 d2w��k+1,m��w�†��k+1,m��w�

+ 	
m��m

m�
 d2w��2,m���w�†��2,m���w� , �16�

where ’s must be all positive. For k=2 we have also verified
that the opposite is true, namely, that the zero modes space of
the above Hamiltonian contains all the fractional Hall states
and that its dimension coincide with the theoretical value
derived in Ref. 23. A similar study exists for k=3 sequence.24

We also claim that a lower density state with n�k anyons
present at w1 , . . . ,wnk is a zero energy state of the following
pinning Hamiltonian
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Hw1,. . .,wnk

�k,m� = 
 d2w��k+1,m��w�†��k+1,m��w�

+ 	
m��m

m�
 d2w��2,m���w�†��2,m���w�

+ 	
�=1

nk

���k,m��w��†��k,m��w�� , �17�

where, again, all ’s are considered positive. It is useful to
think of the pinning Hamiltonian H��w�� as simulating a set
of n�k external probes that have been placed at the loca-
tions w1 , . . . ,wnk. Again, for k=2 and small number of units
of flux added to the fundamental value of the magnetic flux,
we have verified numerically �on the sphere� that the dimen-
sion of the zero energy modes space of the above Hamil-
tonian is precisely equal to 2n−1. A similar study exists for the
k=3 sequence.24

Given the particular form of the pinning Hamiltonian,
namely, the fact that each term is positive definite, we have
the following crucial observation: the zero energy states of
the pinning Hamiltonian, for arbitrary anyon configuration
�w�=w1 , . . . ,wnk, can be computed in two steps without in-
volving any approximation. Here is how: �1� construct the
null space H0 of the Hamiltonian H�k,m� given in Eq. �16�. �2�
Restrict the pinning Hamiltonian

H��w�� = 	
�=1

nk

��k,m��w��†��k,m��w�� �18�

to H0 and construct its null space H0��w��, which contains
all the Hall states with anyons pinned at w1 , . . . ,wnk.

As we shall exemplify later, the dimension of the many-
body Hilbert space increases extremely fast with the number
of electrons. For this reason, any attempt of direct diagonal-
ization of the full pinning Hamiltonian on the full Hilbert
space is futile. Now, the difference between the pinning
Hamiltonian and H�k,m� is that the latest is translational in-
variant. In the sphere geometry,26 this means that H�k,m� com-
mutes with the total angular momentum L. Thus, to generate
the null space H0 in the sphere geometry, we need to search
only for the zero modes of highest weight, i.e., the ones in
the null space of L+ operator. Once this step is completed, we
can generated the full H0 by successively applying L− opera-
tor on the highest weight zero modes. This program was
numerically implemented using standard techniques.

IV. RESULTS FOR THE MOORE-READ SEQUENCE

Here we show a set of results for the Moore-Read se-
quence k=2 and m=1 in the first Landau level. The calcula-
tions were performed with the sphere geometry, where we
can work with a finite number of electrons. The number of
available orbitals in the first Landau level is Norb=N�+1,
where N� is the magnetic flux �in the quantum units of flux�
passing through the surface of the sphere. We have to sepa-
rately discuss the case of odd and even number of electrons.
The incompressible state exists only for even number N of
electrons and occurs when the number of flux is relation

N�
0 =2N−3 with the number N of electrons. For this case,

dim�H0�=1.

A. One pair of anyons

When the number of flux becomes N�=N�
0 +1, a pair of

anyons is generated and

dim�H0� =
1

2
��N/2� + 1���N/2� + 2� , �19�

where the square brackets indicates the integer part.23 We
have computed and saved the H0 spaces for N /N�=4 /6, 5/8,
6/10, 7/12, 8/14, 9/16, 10/18, 11/20, 12/22, 13/24, 14/26,
15/28, and 16/30. The largest system in this sequence, the 16
electrons on 31 orbitals, has dim�H0�=45.

If we fix the positions of the two quasiholes at arbitrary
locations w1 and w2, by adding the pinning potential de-
scribed in Eq. �18�, all the states in H0 are pushed up in
energy, except one state whose energy remains exactly zero.
This is precisely the state 	�w1,w2�

�k,m� discussed above. To ex-
emplify, we consider the largest systems we computed so far,
namely, the system with 15 electrons on 29 orbitals �odd
number of electrons� and the system with 16 electrons on 31
orbitals �even number of electrons�. In this cases, the total
many-body Hilbert spaces have staggering dimensions of
77,558,760 and 300,540,195, respectively. In this extremely
large Hilbert spaces, we find a number of zero modes for
H�2,2� equal to 36 in the first case and 45 in the second case
�in total agreement with Eq. �19��. If we fix w1 and w2 and
diagonalize H�w1 ,w2��H0

, we find one zero mode for both
cases. Finding this zero mode would have been impossible
without taking full advantage of the translational symmetry
at the first step when H0 was resolved.

To visualize a state, we compute the corresponding par-
ticle density and pair amplitude as functions of position w on
the sphere. The latest is given by the expectation value of
��2,2��w�†��2,2��w� on the zero mode. A plot of these quanti-
ties for the zero modes discussed above, is shown in Fig. 1.
The positions of the probes were chosen as ��=� /2,�=0�
and ��=� /2,�=��, so that we have maximum possible
separation between the trapped anyons. Since the anyons are
far apart, there is no visible difference between even and odd
cases. Referring to the Bratelli diagram for the Moore-Read
sequence,13 the even and odd number of electrons corre-
spond to the q-spin S=0 and S=1 sectors, respectively. Thus,
we can see that there is no difference in the local properties
of the wave functions belonging to different conformal
blocks, which is precisely what one should see for a topo-
logical degeneracy. As we shall see, things look completely
different when we bring the anyons close to each other.
Other things to notice about Fig. 1 are the fact that the den-
sity is finite while the pair amplitude is exactly zero at the
probe locations and the fact that the two anyons appear to be
totally separated.

Let us take a few lines here and explain our plots. Quan-
tities that depend on the position on the sphere will be shown
as surface plots with the quantity of interest on the z axis.
The cartesian coordinates x and y describe points of the
sphere. If � and � are the usual angles on the sphere, then the
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relation between �� ,�� and �x ,y� is given by �=x2+y2 and
�=arctan�y /x�.

Next, let us take a look at the energy spectrum of
H�w1 ,w2��H0

as function of probe separation, d���
=N� sin�

2 , while gradually increasing the number of elec-
trons from 9 to 16. For each size, the probes were moved
along the meridians �� ,�=0� and �� ,�=��, with � increas-
ing from 0 to � /2. The strength of the probe potential was
fixed at =1. The results are shown in Fig. 2, where each
panel displays a number of bands �equal to dim�H0��, repre-
senting the flow of the eigenvalues with the distance d. There
is one and only one eigenvalue that remains strictly zero
�within a numerical error that is less than 10−12�. The energy
gap separating this zero mode from the rest of the spectrum
goes to zero as the probes come closer to each other and
converges to a well-defined limit when the probes are moved
far apart from each other. Compared to the other level spac-
ings in the graph, the energy gap appears large. Another
thing to notice is that there is a difference in the eigenvalues
flow patterns when the plots for odd and even number of
electrons are compared. It is also interesting to remark that
the flow patterns remains almost unchanged as the size of the
system is increased.

Fusing the anyons. As one can clearly see in Fig. 2, when
the anyons are fused, the lowest energy level becomes de-
generate. The electron density is not well defined but we can
still study its limit as the distance between the anyons go to
zero. In this limit, the electron density becomes radially sym-

metric and we can plot the density as a function of the dis-
tance from the position of the fused anyons. The results are
shown in Fig. 3 for different sizes of the Hall system. The
graphs reveal that the particle density is different for odd and
even number of electrons. This means that one should be
able to tell when a pair of anyons is in the S=0 or S=1 sector
by simply fusing the anyons together and measuring the elec-
tron density. Figure 3 also reveals that the electron density is
rapidly converging with the size of the system.

B. Two pairs of anyons

When the number of flux becomes N�=N�
0 +2, two pairs

of anyons are created and23

(a’) (b’)

(a) (b)

FIG. 1. �Color online� ��a� and �a��� The particle density and
��b� and �b��� the pair amplitude corresponding to the unique zero
mode of the pinning Hamiltonian H�w1 ,w2��H0

. The first row cor-
responds to the odd or S=1 sector �N=15, N�=28� and the second
row corresponds to the even or S=0 sector �N=16, N�=30�. The
position of the probes is indicated by the dots.

Distance Distance

FIG. 2. The spectrum of H�w1 ,w2��H0
as function of distance

between the probes, which are moved along the meridians �� ,�
=0� and �� ,�=�� with � increasing from 0 to � /2. The left /right
column corresponds to odd/even number of electrons. Starting from
the top, the left panels correspond to N /N�=9 /16, 11/20, 13/24,
and 15/28 and the right panels to N /N�=10 /18, 12/22, 14/26, and
16/30.
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dim�H0� =
1

192
��N + 1��N + 3��N + 5��N + 7�

�N + 2��N + 4�2�N + 6� ,
� �20�

where the first row refers to odd and the second row to even
number of electrons. We have computed and saved the H0
spaces for N /N�=4 /7, 5/9, 6/11, 7/13, 8/15, 9/17, 10/19,
11/21, 12/23, 13/25, 14/27, and 15/29 �16/31 resisted to us so
far�. The largest system in this sequence, the 15 electrons on
30 orbitals, has dim�H0�=660.

It is instructive to consider an example. We pick the larg-
est system we could compute so far, the N=15 and Norb
=30 case, where the total Hilbert space has a dimension of
155,117,520. In this extremely large Hilbert space, we find
660 zero modes for H�2,2� �as we should�. If we fix w1 , . . . ,w4
and compute the zero modes of H�w1 , . . . ,w4��H0

, we find
two zero modes �as we should�. Figure 4 shows the density
and the pair amplitudes corresponding to an orthogonal split-
ting of the zero modes space. The probes were fixed in a
tetrahedral configuration for maximum separation. The or-
thogonal splitting of the zero modes space was generated by
adding an infinitesimal, degeneracy lifting, Coulomb interac-
tion to H�w1 , . . . ,w4�. The position of the probes is indicated
by the dots. One can see that, at the probe locations, the
electron density is finite while the pair amplitude is exactly
zero. Also, judging by these plots, one could say that the
quasiholes are separated. We should also point out that plots
for the two zero modes look very similar, which is again the
signature of the topological degeneracy.

We continue our analysis of the case N�=N�
0 +2 by plot-

ting the spectrum of H�w1 , . . . ,w4��H0
for different probe

locations. For this, we moved the probes continuously along
the paths shown in the inset of Fig. 5, which can be de-
scribed by: w1���= �� ,�=0�, w2���= �� ,�=��, w3���
= ��−� ,�=� /2�, and w4���= ��−� ,�=−� /2�. Figure 5
plots the eigenvalues of H�w1 , . . . ,w4��H0

as functions of �
for N=14 and N�=27 �the graph becomes extremely busy if
larger systems are used�. For � different from 0 or �, one can
see in Fig. 5 the doubly degenerate zero energy level, sepa-
rated by an energy gap from the rest of the spectrum �which
appears large when compared with other energy separations
visible in the graph�. The gap becomes independent of the
positions of the probes when the probe separation becomes

larger than approximately 4 magnetic lengths. As the probes
come closer to each other, the gap decreases and, at the in-
tersection points �=0 and �, the gap is completely closed,
leading to an abrupt increase in the level degeneracy.

FIG. 3. �Color online� The particle density for fused probes as
function of distance from the fusing point. Left/right panel refers to
odd/even number of electrons. On the left, the different curves cor-
respond to N /N�=9 /16, 11/20, 13/24, and 15/28 and, on the right,
the different curves correspond to N /N�=10 /18, 12/22, 14/26, and
16/30.

(a) (b)

(a’) (b’)

FIG. 4. �Color online� Visualization of the two zero modes for
N /N�=15 /29. ��a� and �a��� shows the electron density and ��b� and
�b��� shows the pair amplitude of the two zero modes. The zero
modes were obtained by splitting the two-dimensional space. The
probes were fixed in a tetrahedral configuration.

� (rad)

�

FIG. 5. �Color online� The spectrum of H�w1 , . . . ,w4��H0
as a

function of the probes’ position. The probes were moved along the
for meridians: �� ,�=0�, �� ,�=��, ��−� ,�=� /2�, and ��−� ,�
=−� /2� �see inset�. The results correspond to Nel=14 and N�=27.
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V. BRAIDING THE MOORE-READ STATES

A. General considerations

Let us consider the general situation when the number of
flux has been increased by n units, N�=N�

0 +n. We use the
pinning Hamiltonian H�w1 , . . . ,w2n��H0

given in Eq. �18� to
control the position of the anyons. Given that each wi is a
two-dimensional variable, the Hamiltonian depends, para-
metrically, on 4n coordinates. We use the symbol x to denote
these coordinates and the shorthand H�x� for
H�w1 , . . . ,w2n��H0

.
Let us consider an arbitrary closed path in the parameter

space: �→x��� �x0=x�0��, where we use the length � to
parametrize the loop. Now imagine that we move along this
path with constant velocity v. One would like to study the
time evolution U�t� generated by the time-dependent Hamil-
tonian H�t��H�x�vt��,

i�tU�t� = H�t�U�t�, U�0� = I , �21�

in the adiabatic limit, i.e., in the limit when the motion along
the path is infinitely slow.

If we denote by Px the projector onto the zero modes
space of H�x�, then the classic adiabatic theorem says
that27–29

U�t�Px0
= Ua�t�Px0

+ o�v,t� , �22�

where Ua�t� is the adiabatic propagator, i.e., the unique
solution of the following system of equations28

i�tUa�t� = „H�t� + i��tPx,Px�…Ua�t� ,

Ua�0� = I . �23�

As long as the energy gap between the zero energy of the
anyons and the energies of the excited states remains open,
the adiabatic evolution is a good approximation of the true
evolution, when restricted to the zero modes space. In fact,
the two become identical if the velocity v is infinitely small.
We want to point out that there are rigorous estimates �see,
for example, Refs. 27–29� of the errors o�v , t� that are made
when one approximates U�t� by Ua�t�, i.e., of the nonadibatic
effects. Since the braids corresponding to the elementary
TQC logic gates are quite long,13 these estimates may play
an important role in the field.

The adiabatic evolution satisfies the following fundamen-
tal relation

Px = Ua�x�Px0
Ua�x�−1. �24�

This equation tells us that the zero modes space is mapped
into itself by the adiabatic evolution. This mapping can be
computed by solving Eq. �23�, which tells us how the zero
modes space is transported during the adiabatic evolution.
One can put all these into a geometric perspective by defin-
ing the following one form �the adiabatic connection�

da =
1

v
H�x�d� + i�dPx,Px� , �25�

in which case Ua can be viewed as the solution of the fol-
lowing differential equation

idUa = daUa, Ua�x0� = I . �26�

Thus, by fixing the speed v, we have eliminated the time.
The quantum algorithms will use the adiabatic unitary trans-
formations Ua���, Ua���� , . . . resulted from taking the probes
along certain closed paths � ,�� , . . ..

Assume that, for each configuration of the anyons �equal
to say that for each x�, we chose a basis set �a gauge�
�1�x� , . . . ,�D�x� in the D=2n−1 dimensional zero mode
space. We use �� �x� to denote the vector of components
�1�x� , . . . ,�D�x�. Due to the fundamental property of the
adiabatic evolution Eq. �23�, there exists a unitary D�D

matrix Ŵ�x� such that

Ua�x��� �x0� = Ŵ�x��� �x� . �27�

The Wilczeck-Zee30 connection is given by

dÂ = iŴ�x�−1dŴ�x� , �28�

which takes the classical form

dAij�x� = −
1

v
H�x� jid� − i�� j�x�,d�i�x�� , �29�

where H�x� ji are the matrix elements of the Hamiltonian in
the chosen basis set. Since we are dealing with zero modes,
the first term in the right-hand side, above, is identically
zero.

The D�D unitary matrix Ŵ�x� implements the adiabatic
evolution in the invariant subspaces PxH0 and it can be com-
puted as the unique solution of the differential equation

idŴ�x� = Ŵ�x�dÂ, W�x0� = I �30�

which is to be integrated along the braiding path. For a loop
� that starts and ends at x0, we solved this equation numeri-
cally, by considering a large number of points along the loop,
x0 , . . . ,xK, and constructing the monodromy

Ŵ� = Px0
Px1

Px2
. . . PxK

Px0
. �31�

This amounts to finding the null space of the pinning Hamil-
tonian for each xk. If we define W��k�= Px0

Px2
. . . Pxk

, then

Ŵ��k + 1� − W��k� = Ŵ��k��Pxk+1
− Pxk

�Pxk

− Ŵ��k�Pxk+1
�Pxk+1

− Pxk
� , �32�

which is the finite difference version of

idŴ��x� = iŴ��x��dPx,Px� , �33�

which is the same as Eq. �30�. The numerically calculated

Ŵ� matrix becomes a unitary matrix only in the limit when
the number of discrete points goes to infinity. To quantify

how much does Ŵ� deviate from a unitary matrix, we com-

pute the absolute value of the determinant of Ŵ�, which is
compared to the value of 1, appropriate for a unitary matrix.
In all the calculations presented in this paper, K was chosen

large enough so that �det Ŵ��=0.999 or better. This is a mea-
sure of how well converged are our numerical calculations.
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B. The quantum geometry of the zero modes states

We can endow the zero modes with a curvature. The cur-
vature form associated with the adiabatic connection is given
by

dF̂ = ���Â� − ��Â� − i�Â�,Â���dx� ∧ dx�. �34�

The explicit expressions of its coefficients are

�F̂���ij�x� = 2 Im���� j�x�,�1 − Px����i�x�� . �35�

Besides the adiabatic connection and curvature, we can
endow the parameter space with an intrinsic metric tensor,
which we will refer to as the quantum metric tensor. First of
all, we can introduce the following quantum distance31

dq�x,x�� = �Px − Px��HS, �36�

where HS means the Hilbert-Schmidt norm. This distance is
at least second-order differentiable in the coordinates x and
x� and for this reason we can generate the quantum metric
tensor g�� via a Taylor expansion

dq�x,x + �x� =
1

2
g��

q �x��x��x� + o��x3� . �37�

The coefficients of the quantum metric tensor are given by
the classical expression31

g��
q �x� = 2 Re	

i

����i�x�,�1 − Px����i�x�� . �38�

In the following, we demonstrate an interesting relation
between the adiabatic curvature and the quantum metric ten-
sor. We fix all anyons, except one, in which case the param-
eter space becomes two dimensional. A point in this param-
eter space describes the position of the itinerant anyon on the
sphere. To compute the coefficient of the curvature form at
an arbitrarily chosen point P on the sphere, we introduce a
local coordinate system by using the complex coordinate w
=2R tan�

2e−i�, where �� ,�� are the usual spherical param-
eters when the north pole is fixed at P. We take w1=Re�w�
and w2=Im�w� as the two independent variables �see Fig. 6�.
In these local coordinate system, the curvature form becomes

dF = F̂�w�dw1 ∧ dw2, �39�

where F̂ is a D�D matrix. At P, in the same system of
coordinates, we can prove the following general fact

g��
q �P� = Tr�F̂�P��g0�P���, �40�

where g0 is the standard metric of the sphere. This shows that
the quantum metric and the standard metric of the sphere are
related by a conformal transformation, which involves the
trace of the curvature tensor.

We start the proof of Eq. �40�. The 2n−1 many body wave
functions 	i of the zero modes depend parametrically on the
position w of the mobile anyon and take the following gen-
eral form23

	i�w� = Ai�w�	̃i�w�, i = 1, . . . ,2n−1, �41�

where the crucial fact is that the vectors 	̃i�w� are all ana-
lytic of w. Ai�w� are normalization factors that are not ana-
lytic of w. We have

Tr�F̂�w�� = 2 Im	
i

��1	i�w�,�1 − Pw��2	i�w�� . �42�

Due to the presence of 1− Pw, we can ignore the action of the
derivatives on the normalization constants Ai�w�, which then
can be pulled out of the scalar product as below

Tr F̂�w� = 2	
i

�Ai�w��2Im��1	̃i�w�,�1 − Pw��2	̃i�w�� .

�43�

Next we use the fact that 	̃i are analytic functions of w, i.e.,
they are functions of the single variable w rather than of two
independent variables w1 and w2, in which case

Tr F̂�w� = 2	
i

�Ai�w��2Im���w	̃i�w�,�1 − Pw��w	̃i�w��

���1w���2w� . �44�

The scalar product is real, which allows us to easily compute
the imaginary part, resulting in

Tr F̂�w� = 2	
i

�Ai�w��2��w	̃i�w�,�1 − Pw��w	̃i�w�� .

�45�

If one repeats exactly the same arguments for the quantum
metric tensor given in Eq. �38�, the conclusion will be that

Fixed anyons

Mobile
anyon

w1

w2

P

FIG. 6. �Color online� The figure illustrates a configuration in
which all anyons are kept fixed except one, which is moved on the
sphere. To compute different quantities at an arbitrary point P of the
sphere, we introduce a local coordinate system �w1 ,w2� as de-
scribed in the text.
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g��
q �w� = 2	

i

�Ai�w��2��w	̃i�w�,�1 − Pw��w	̃i�w�����.

�46�

Since w1 and w2 coincide with the geodesic coordinates of
the sphere at P, i.e., the coordinates in which the metric
tensor becomes the identity matrix when evaluated at P:
g0�P���=���, the proof of Eq. �40� is completed.

VI. QUANTUM GEOMETRY FOR ONE FLUX ADDED

In this case we have two anyons and the zero modes space
is one dimensional. We keep one anyon fixed and move the
other along different braiding paths. The monodromy of any
path � can be computed by integrating the curvature

Ŵ� = ei�S�
dF, �47�

where S� is the surface enclosed by �. Thus, if we map the
curvature, we can easily compute the monodromy of any
arbitrary path.

We compute the coefficient F of the curvature form �see
Eq. �39�� at a point P of the sphere from

F�P� = lim
S�→0

Ŵ� − 1

iS�

, �48�

where � is a small path around P. The monodromy is com-
puted as explained in the previous section and we obtain the
limit by considering paths of decreasing radius. The value of
F computed this way coincides with the coefficient of the
curvature in the local coordinate system �w1 ,w2� introduced
in the previous section. The monodromy Eq. �48�, however,
is independent of the coordinates used to compute the curva-
ture form.

The upper panels in Fig. 7 plot F�P� as a function of the
distance from P to the position of the fixed anyon. The two
upper panels refer to odd and even numbers of electrons. The
lower two panels show the sum and the difference between
the results for odd and even number of electrons. Since one
is interested in the thermodynamic limit, we plot sequences
of curves for an increasing number of electrons. By compar-
ing the curves for these sequences, one can determine how
fast is the thermodynamic limit achieved.

As one can clearly see, the curves in the top panels of Fig.
7 go asymptotically with the distance toward a constant
value, which is precisely equal to the quasihole charge e�

=e /4 �when working on the sphere, there is a small correc-
tion to this value, correction that goes to zero as the size of
the sphere is increased�. The most remarkable thing about
Fig. 7 is that the curvatures for odd/even number of electrons
have different thermodynamic limits, as one can clearly see
by inspecting the difference between the two, plotted in the
lower-right panel.

From the adiabatic curvature we compute the Berry
phases accumulated �i.e., the exponent in Eq. �48�� as we
move one anyon along different paths of the form �=ct,
while keeping the other anyon fixed at the north pole of the
sphere. Figure 8 shows the Berry phase as function of the
area enclosed by the path. We use this figure to draw several

important conclusions. First, we point out that the Berry
phase plotted in this figure includes also the Aharonov-Bohm
phase due to the magnetic flux �B: �AB=e��B. Thus it is
expected that the total Berry phase, as a function of the en-
closed area, to go asymptotically to a linear curve, a feature,
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FIG. 7. �Color online� The adiabatic curvature F�P� obtained by
moving one anyon while keeping the other fixed. Left upper panel
shows the results for odd number of electrons: N /N�=9 /16, 11/20,
13/24, and 15/28 and the right upper panel shows the results for
even number of electrons: N /N�=10 /18, 12/22, 14/26, and 16/30.
The lower-left and lower-right panels show the sum and the differ-
ence between the odd and even results, respectively. For example,
we added and subtracted the result for N /N�=10 /18 and N /N�

=9 /16, and then the results for N /N�=12 /22, N /N�=11 /20, etc.
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FIG. 8. �Color online� The Berry phase accumulated by an
anyon when moved along a path �=const with the other anyon
fixed at the north pole. Different lines refer to different system sizes
that are marked in the diagram with their corresponding N /N� num-
bers. A point on a particular line represents one braiding path,
which is labeled by the area enclosed by the path, shown on the
horizontal axis.
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that is, obviously present in Fig. 8. The slope of the
asymptotic part of the curve is equal to the charge e�=e /4 of
the anyons.

Excepting the length of the lines, the graphs for different
system sizes look very similar, implying that the thermody-
namic limit is achieved very fast. We expect the graphs for
the larger systems to represent the thermodynamic limit with
a high degree of accuracy. Looking at the largest systems, we
can see that, for large enclosed areas, the curves representing
the Berry phase for systems with even number of electrons
are shifted upward by � relative to the curves representing
the Berry phase for systems with odd number of electrons.
This is a topological effect, since the shift is independent of
the area enclosed by the braiding loop or of the shape of the
loop, as long as the loop is large enough. The finding is in
total agreement with the SO spinorial representation of the
braid group derived in Ref. 21 on the basis of underling CFT
structure of the Moore-Read state. This effect was also con-
sidered the most direct signature of the non-Abelian statistics
for the Moore-Read state.16,32

We conclude this section with the observation that the
coefficient F depends on how we compute the area enclosed
by � in Eq. �48� more precisely on what metric tensor is used
when computing the area enclosed by the loops. The plots
shown in Fig. 7 were obtained with the standard metric of
the sphere. We have repeated the calculations using the quan-
tum metric tensor Eq. �38� instead, in which case we have to
rescale the coefficient

Fq�w� = F�w�/det g��
q �w� . �49�

According to our previous analytic prediction �see Eq. �40��,
Fq�P� should be identically 1. We numerically checked this
prediction in the following way. The quantity that is readily
available in the numerical calculations is the quantum dis-
tance. We can compute the determinant of the quantum met-
ric tensor by considering a circle of radius � �in the standard
metric of the sphere� centered at P and calculate the quantum
distance between P and the points of this circle. If dM

q and dm
q

denote the maximum, respectively, minimum quantum dis-
tance to the points of the circle, then

det g��
q �P� = lim

�→0

�dm
q dM

q �2

�4 . �50�

The computation of the determinant is done simultaneously
with the calculation of the curvature, which also requires the
walk on the same circle. The numerical calculations give a
direct confirmation that Fq�P�=1 for all points of the sphere.

VII. QUANTUM GEOMETRY FOR
TWO FLUXES ADDED

In this case we have four anyons and the zero modes
space is two dimensional. We will keep three anyons fixed
and move the forth one along different braiding paths. For
the non-Abelian case, there is no simple Stokes theorem,33,34

which means the monodromy cannot be simply computed
from the curvature as we did for the previous case. Even so,
mapping the curvature provides a clear picture of the non-

commutative and topological properties of the states.
The parameter space remains two dimensional. As before,

a point in this parameter space indicates the position of the

mobile anyon. Thus dF= F̂dw1∧dw2 but F̂ is now a 2�2

matrix. We compute F̂�P� using the same algorithm �see Eq.

�48��. Using the Pauli’s matrices, �i, i=1,2 ,3, F̂�P� can be
uniquely decomposed as

F̂�P� = f0�P� + f�P� · � , �51�

where f0�P�= 1
2Tr F̂�P� and f�P� is a three-component vector.

We will refer to f0 as the Abelian and to f ·� as the non-
Abelian part of the curvature. It is important to notice how
different quantities behave when changing the gauge, i.e., the
basis in the two-dimensional zero modes space. We have:
f0�P� is gauge independent; the magnitude of f�P� is gauge
independent; the orientation of f�P� is gauge dependent.

Figure 9 shows plots of Tr F̂�P� for different system

sizes. For each size, we show Tr F̂�P� calculated with the
standard and with the quantum metric tensor. The numerics

confirm again the theoretical prediction that Tr F̂�P�=1.
To demonstrate that the braid group is noncommutative,

we need first to show that f�P� is nonzero. This, however, is
not enough. We need also to rule out the existence of a par-
ticular gauge in which the adiabatic connection becomes di-
agonal at every point of the parameter space. If such a gauge
exists, the fiber bundle of the zero modes degenerates into a
trivial U�1��U�1� fiber bundle in which case there will be
two one-dimensional fibers that do not mix during the adia-
batic braiding. Consequently, all monodromies will take a
diagonal form in this gauge and they will commute with each
other.

As already mentioned, the magnitude of f�P� is gauge
independent. Thus we can see if f�P� is zero or not by simply
plotting its magnitude, which is shown in Fig. 10 for differ-
ent sizes. The graph clearly demonstrates that f�P� is nonzero
and it appears to be concentrated near the positions of the
fixed anyons. We will further discuss Fig. 10 in the next
section.

Next, we introduce a scalar function which we call the
twist density �TW, which gives a measure of how much are
the fibers twisted during the adiabatic parallel transport. We
start the construction from the following two form

d�̂ = �D�F̂,D�F̂�dw� ∧ dw�, �52�

where D� denotes the covariant derivative corresponding to
the adiabatic connection and �,� denotes the usual commuta-
tor. This form is invariant to coordinate transformations, thus
well defined. The coefficients of this form are 2�2 matrices.
In the special case of a two-dimensional parameter space, the
form reduces to

d�̂ = �D1F̂,D2F̂�dw1 ∧ dw2. �53�

Based on the above observations, we construct the following
two form,
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d�TW � det�D1F̂,D2F̂�dw1 ∧ dw1, �54�

whose coefficient is a pseudoscalar function. Since d�̂ is in-
variant to coordinate transformations, d�TW is also invariant
and hence well defined. The density

�TW = det�D1F̂,D2F̂� �55�

is gauge invariant and it is identically zero for trivial fiber
bundles, in particular, for U�1��U�1� fiber bundle over our
parameter space. Thus, if we show that �TW is nonzero, that
will be equivalent to demonstrating that the zero modes fiber
bundle is nontrivial.

Let us now give the physical interpretation of our con-
struction. For this we consider three points on the sphere: w,
w+�w1, and w+ i�w2, as in Fig. 11. Assume that we com-

puted the curvature F̂ at each of these points in a prechosen
arbitrary gauge. The corresponding f �see Eq. �51�� vectors
are gauge dependent. To compare the three vectors, we need
to adiabatically transport them to the same point w. For this

we compute the monodromies Ŵ1 for the path w+�w1→w

and Ŵ2 for the path w+ i�w2→w and then compute F̂1

=Ŵ1F̂�w+�w1�Ŵ1
−1 and F̂2=Ŵ2F̂�w+ i�w2�Ŵ2

−1. By decom-

posing F̂1,2 as in Eq. �51�, we obtain the parallel transport of
f�w+�w1� and f�w+ i�w2� to w. We denote them by f1 and
f2, respectively. We now can ask if they are parallel. To quan-
tify the answer to this question, we form the differences
�1f= f1− f and �2f= f2− f and define

�TW � lim
�w→0

��1f � �2f�
�w1�w2

. �56�

This quantity is gauge invariant and measures how much are
�1f and �2f deviating from being parallel. The two definitions
of �TW given in Eqs. �55� and �56� coincide. Figure 12 shows
plots of the twist density for different system sizes.

VIII. DISCUSSION

We now can draw several conclusions regarding the non-
commutative and topological properties of the Moore-Read
states with four anyons. Although the size of the systems we
attempted are still small, the trend seen in the sequence of
plots shown in Fig. 10 suggests that the non-Abelian curva-
ture is localized in the vicinity of the fixed anyons. This
implies a topological property for the non-Abelian part of the
mononodromies, i.e., their independence of the shape of

FIG. 9. �Color online� Plots of Tr F̂�P� for different system sizes �each panel is marked with the corresponding N /Norb�. For each size,

we show Tr F̂�P� calculated with the standard metric tensor �left� and with the quantum metric tensor �right�.
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braiding paths as long as the braiding path are far enough
from the anyons.

Figure 12 demonstrates the existence of noncommutative
monodromies. Indeed, if all the monodromies were commut-
ing with each other, that will imply the existence of a gauge
in which the connection is diagonal. But this will imply
�TW=0, which is contradicted by Fig. 12.

Figure 12 reveals much more, namely, the splitting of the
zero modes space as predicted by the fusion rules of the
underlying CFT structure of the Moore-Read sequence.13,14

For this, notice that the twist density is practically zero when
the mobile anyon comes near the fixed anyons and takes
nonzero values only in between the fixed anyons. This im-
plies that, although �f� takes appreciable values in the regions
near the fixed anyons, the states are commutative. In other
words, when the mobile anyon comes close to a fixed anyon,

the two eigenmodes of the curvature matrix F̂�P� split the
zero modes space into two sectors that do not mix with each
other during the braiding. If things happen as predicted by
the fusion rules of the underlying CFT structure of the
Moore-Read sequence, then we should be able to read from
the classic Bratelli diagram what these sectors are: they
should be the q-spin S=0 and S=1 sectors.13 For the sphere
geometry, these sectors correspond to the even, respectively,
the odd numbers of electrons.

To demonstrate that this is the case, we notice that �f�P��
plotted in Fig. 10 is equal to half the difference between the

two eigenvalues of the curvature coefficient F̂�P� and that

Tr F̂�P� plotted in Fig. 9 is equal to the sum of the two
eigenvalues. Thus, near the fixed quasiholes, the values of
these quantities, properly normalized, should compare well
with the values shown in the plots of the lower panels of Fig.

7. To verify that this is the case, we generated line-plots out
the surface plots shown in Figs. 9 and 10. The line plots were
generated by recording the points along the path shown in
the inset of Fig. 13. We used the data corresponding to the
standard metric of the sphere. These line plots are compared
in Fig. 13 with the absolute value of the data shown in Fig. 7.
As one can see, the matching is almost perfect near the fixed
anyon. By comparing two system sizes, we can also see the
overall agreement becoming better as the size of the system
is increased. We expect the agreement to become perfect as
the sphere radius is taken to infinity. It is important to notice
that there is agreement for both even and odd number of
electrons cases.

Once we made this connection, we can we can go back
and discuss the localization of the non-Abelian curvature
near the fixed quasiholes. The difference between the Berry
phases for odd and even number of electrons, shown in Fig.
8, converges extremely fast to � �the plot suggests an expo-
nential convergence�. From the connection made in the pre-

w

w+i�w2

w+�w1

f(w+�w1)

f(w+i�w2)

f1

f2

�f1

�f2

f(w)

FIG. 11. �Color online� A diagram of the parallel transport used
in the calculation of the twist density �TW.

FIG. 10. �Color online� Plots of the amplitude of the non-Abelian part of the curvature �f�P�� for different system sizes �each panel is
marked with the corresponding N /Norb�. For each size, we show �f�P�� calculated with the standard metric tensor �left� and with the quantum
metric tensor �right�.

EMIL PRODAN AND F. D. M. HALDANE PHYSICAL REVIEW B 80, 115121 �2009�

115121-12



vious paragraph, this implies that the non-Abelian curvature
is also strongly �exponentially� localized near the fixed
anyons. Unfortunately, the size of our systems is too small to
allow a quantitative evaluation of this asymptotic decay be-
havior.

We end this discussion section by mentioning that we did
compute several braiding monodromies and tried to compare
their group properties under multiplication with the predic-
tions following from the underlying CFT structure of the
Moore-Read state derived in Ref. 21. Unfortunately, the size
of our system is too small to see a strong correlation between
the two. This can be seen from Fig. 13, where the continuous
line practically represent the thermodynamic limit of the
non-Abelian curvature and the open circles represent the
same quantity for our largest finite system. The most prob-
lematic part is the large discrepancy seen at points in be-
tween the quasiholes �the end of the curves in Fig. 13�,
which affects any monodromy looping around a fixed anyon.

IX. CONCLUSIONS

We have shown that the Hall sequences can be viewed as
the zero modes of certain Hamiltonians, which were written
down explicitly using many-particle creation operators. The
compressible Hall states with the anyons fixed at definite
locations were shown to be the zero modes of a pinning
Hamiltonian, which was also written down explicitly. We
have developed an efficient diagonalization algorithm for the
pinning potential, which was subsequently used to explore
some general properties and to map the quantum geometry of
the Moore-Read states with two and four anyons.

Working with two anyons, we were able to give a direct
confirmation of the topological properties of the monodro-

mies. The monodromy corresponding to a loop enclosing one
of the anyons was found to differ by exactly a factor −1,
when computed for even/odd number of electrons �which
correspond to the q-spin S=0 /1 sectors�. This is in perfect

distance distance

FIG. 13. �Color online� Comparison between the results ob-
tained for the Abelian case �one flux added� and for the non-Abelian
case �two flux added�. The left/right panels refer to odd/even num-
ber of electrons. The solid lines in the upper/lower panels is the
difference/sum between the Abelian Berry curvature for N /N�

=16 /30 and N /N�=15 /29 �see Fig. 9�. The two open circle lines in
the upper/lower panels show the values �multiplied by 2� of
f0�x� / �f�x�� recorded along the path shown in the inset. In the left
panels, the dotted lines correspond to the system sizes N /N�

=15 /29 and 13/25. In the right panels, the dotted lines correspond
to N /N�=14 /27 and 12/23.
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FIG. 12. �Color online� Plots of �TW�P� for different system sizes �each panel is marked with the corresponding N /N��. To see how
�TW�P� relates to the adiabatic curvature, for each size, we show �f�P�� on the left and �TW�P� on the right.
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agreement with theoretical predictions based on the underly-
ing CFT structure of the Moore-Read sequence.

By fusing the two anyons, we found that the electron
density is different for the even/odd number of electrons.
This is a direct confirmation that one can determine if a
quantum state is in the S=0 /1 sectors by fusing the anyons
and measuring the electron density. This type of measure-
ment stands at the basis of read-in and read-out processes of
TQC.13

Working with four anyons, we mapped the Abelian and
non-Abelian parts of the adiabatic curvature for the case of
one itinerant anyon and three anyons fixed at the equator, in
the most possible spread configuration. The mapping reveals
that the non-Abelian curvature is strongly localized near the
fixed quasiholes. We introduced the twist density, which
measures twisting of the zero modes during the adiabatic
braiding. We found that the twist density is practically zero
near the fixed anyons, fact that signaled a splitting of the
zero modes in two nonmixing sectors. Further analysis

showed that this splitting is precisely the one implied by the
fusion rules of the underlying CFT structure of the Moore-
Read sequence.

If the computations can be implemented to larger systems
sizes, the present study open the possibility of: similar stud-
ies for higher level Hall sequences that support universal
quantum computation; direct implementation and verification
of the quantum gates found in Ref. 19 and a direct simulation
of a quantum algorithm, including the read in, braiding and
read-out phases.
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